4.4: DECISION TREES: Non Metric Methods

Some Figures in these slides were taken from
Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000
with the permission of the authors

Febrero-Mayo 2005
M. Cabrera, J. Vidal

INDEX

1 INTRODUCTION: Decision Trees
2 CART: Classification And Regression Trees
3 Pruning CART
4 Other Methods
5 Conclusions
1 INTRODUCTION: Decision Trees

- Previous studied Classification Methods work with real value feature vectors and compute some metric from them: Distance, Similarity, etc. Decision Tree based Methods are non-metric.
- Other Alternatives: List of attributes, Discrete Features, forming a property d-tuple.
- Discrete Problems solved with Decision Trees, Rule-based or Syntatic Pattern Recognition.

Sequence of questions to classify a pattern.

Root Node and successive branches linked to other nodes.

Links must be mutually distinct and exhaustive.

Questions finish at leaf nodes.
1 INTRODUCTION: Decision Trees

DECISION BOUNDARIES:

3 CART: Classification And Regression Trees

BINARY DECISIONS

- A Training Labeled Dataset is used to create a Classification Tree
- A decision tree progressively splits the set of training samples into smaller and smaller subsets.
- When all the samples in a subset have the same category the branch of the tree is terminated.
- A branch can be alternatively terminated with a mixture subset and declared leaf using CARTs
- Objective: To obtain a small binary tree

- Important questions working with CARTS:
 - Which feature must be tested at each node???
 - How pruning the tree?
We seek a property to test at each node that makes the immediate descendent node as pure as possible. Impurity in minimized

- **ENTROPY IMPURITY**: ‘infcrit’

\[i_E(N) = -\sum_j P(\omega_j) \log_2 P(\omega_j); \quad P(\omega_j) = \frac{n_j}{n_{TOTAL}} \]

- **GINI IMPURITY**: ‘maxcrit’

\[i_G(N) = \sum_{i \neq j} P(\omega_i)P(\omega_j) = 1 - \sum_j P^2(\omega_j) \]

- **MISSCLASSIFICATION IMPURITY**: ‘fishcrit’

\[i_M(N) = 1 - \max_j P(\omega_j) \]

NO ES EL FISHCRIT DEL PRTOOLS QUE ESTÁ SOLO PARA DOS CLASES

Figure 8.4. For the two-category case, the impurity functions peak at equal class frequencies and the variance and Gini impurity functions are identical. The entropy, variance, Gini, and misclassification impurities (given by Eqs. 1–4, respectively) have been adjusted in scale and offset to facilitate comparison here; such scale and offset do not directly affect learning or classification. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.
BINARY TREES (Pre Pruning)

• Given a node N: What feature “T ≻ s” should be chosen for the test??.

• Decrease the impurity at N node (N-local optimization):

\[\Delta i(N) = i(N) - \frac{n_i}{n_L + n_R} i(N_L) - \frac{n_R}{n_L + n_R} i(N_R) < 1 \text{ bit} \]

• Sometimes several decisions implies same impurity variation. With real values:

\[X_s = \frac{n_L}{n_L + n_R} X_L - \frac{n_R}{n_L + n_R} X_R \]

• Practical Problem: If two different patterns have the same attributes the impurity at leafs cannot be reduced to zero.

• Multiclass binary tree: The set of c categories is divided into two subsets and the problem is solved as a binary one. Computationally it is expensive because all possible subset division must be tested.

• The particular choice of an impurity function rarely affects the final structure for the tree.
WHEN TO STOP SPLITTING?? Pre Pruning Methods
If the training set is very big, the obtained tree can be over fitted. In the extreme each leaf corresponds to a single training point.

1.- UNBALANCED TREES: The impurity lost of the best split must be higher than a threshold.
2.- MDL: Minimum Description Length: A Criterion function is minimized (size is the number of nodes). α is a Tuning positive parameter that governs the tradeoff between tree size and its goodness of fit to the data. Large values α of result in smaller tree size.

$$\alpha \cdot \text{size} + \sum_{N_{\text{leaf}}} i(N)$$

3.- VALIDATION TECHNIQUES: A $\alpha\%$ remaining validation set is used to test the tree trained with the $(1-\alpha)\%$ set. The training process finishes when the test error is minimized.
With CROSS-VALIDATION TECHNIQUES: Different independent validation sets are used.

PRUNING (Alternative to stopped splitting: postpruning):
• In a first step the tree is grown fully or until some minimum size
• In a second step some sub-trees are substituted for leaves following different pruning criteria.
• The final tree results unbalanced

MATLAB (PrTools alternatives for pruning):
$W = \text{treec}(A, \text{crit}, \text{prune}, T)$
- prune = -1 pessimistic pruning as defined by Quinlan (post pruning PEP).
- prune = -2 testset pruning using the dataset T (post pruning REP)
- prune = 0 no pruning
- prune > 0 early pruning (pre pruning), e.g. prune = 3
- prune = 10 causes heavy pruning.
3 Post-Pruning CART

PRUNING STRATEGIES (Pessimistic or Quinlan Criteria PEP):

- It is a TOP-DOWN approach:

\[T_0 \supset T_1 \supset \ldots \supset T_k \Rightarrow \]

\[
C_{\alpha}(T_i) = \sum_{n=1}^{L(T_i)} \sum_{x \in w_n} (x - \hat{x}_n)^2 + \alpha L(T_i)
\]

\[
C_{\alpha}(T_i) = \sum_{n=1}^{L(T_i)} \epsilon_{\alpha}(T_i) + \alpha L(T_i)
\]

\[\alpha = 0.5 \]

- The node \(T_i \) is replaced by a leaf if:

\[C_{\alpha}(T_i) < \sum_{i} C_{\alpha}(T_{i+1}) \]

3 Post-Pruning CART

PRUNING STRATEGIES (Reduced Error Pruning REP):

- It is a DOWN-TOP approach:

 - It uses an additional training set, called the “pruning set” unseen during the growing stage.
 - A simple error check is calculated for all nonleaf nodes.

- The node \(T_i \) is replaced by a leaf if the error is smaller than the error of the whole tree on the pruning set.

 - The leaf is labeled to the majority class.
 - Danger: Tendency towards overpruning.
4 Other Methods

ID3: Interactive dichotomizer 3 (Non Binary):
- It is designed for nominal data.
- Discrete Feature Vectors (or discretized)
- Categories are treated as unordered
- Each node has as many children nodes as the number of categories of the (nominal) feature at that node.
- The maximum number of levels is equal to the number of features.
- The algorithm continues until all nodes are pure or there are no more variables to split on.

C4.5 is an extension of ID3 that accounts for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, and so on. Last Version C5.0 [Quinlan, 1993]
- It uses continuous valued variables as in CARTS and the nominal variables as in ID3.

EXAMPLE: Sensibility of Decision Trees with data
Example: Feature Choice

Example: 4 Gaussian Classes
Example: 4 Gaussian Classes
5 Conclusions

• Entropy impurity measure is the most acceptable in most cases.
• Pruning (Post pruning) is preferred over stopped splitting (Pre pruning) but computationally worst.
• To bin real values as in ID3 is only useful if computational advantages are high.
• High training set size can produce over fitted trees.
• It is recommended to exploit designer information on feature pre-processing steps.
• They are particularly useful with non-metric data.