Enginyeria de Control 1 (EAEI)

Informació acadèmica:

Departament:
Enginyeria de Sistemes, Automàtica i Informàtica Industrial (707)

Plans d’estudis:
EAEI : Enginyeria en Automàtica i Electrònica Industrial (2º cicle)

Centre d’impartiment:
Escola Tècnica Superior d’Enginyeria Industrial de Terrassa. (ETSEIT).
Campus de Terrassa. Universitat Politècnica de Catalunya (UPC)

Tipus Assignatura i Càrrega lectiva:
Troncal: 4,5 crèdits de teoria i aplicacions + 1,5 crèdits de pràctiques de laboratori

Informació lectiva:

Aula de docència:
Dilluns: 2.4 (TR5)
Divendres: 2.4 (TR5)

Horari de classe:
dilluns 9:00-10:00
divendres 9:00-11:00
* Nota: consultar grups de pràctiques

Professorat i Hores de Consulta:

Teoria i aplicacions:
Joseba Quevedo  joseba@esaii.upc.es  Edifici TR-11. Despatx 3.15

Pràctiques de laboratori:
Bernardo Morcego  bernardo@esaii.upc.es  Edifici TR-11. Despatx 3.05
Ramon Pérez  perez@esaii.upc.es  Edifici TR-11. Despatx 3.05

Informació del curs:

http://bibliotecna.upc.es/bustia -> ETSEIT, titulació EAEI, assignatura EC 1
Bibliografia Bàsica:

Sistema d’avaluació: EAEI

<table>
<thead>
<tr>
<th>Avaluacions</th>
<th>Percentatge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a avaluació escrita</td>
<td>40%</td>
</tr>
<tr>
<td>2a avaluació escrita</td>
<td>40%</td>
</tr>
<tr>
<td>Crèdits d’aplicació</td>
<td>(*)</td>
</tr>
<tr>
<td>Crèdits de laboratori</td>
<td>20%</td>
</tr>
</tbody>
</table>

(*) A cada avaluació escrita es plantejarà un problema ja treballat als crèdits d’aplicació que representarà un 10% de la nota de la prova.

La data de la primera avaluació serà el divendres dia 8 de novembre del 2002 de 9h a 11h i la segona avaluació serà el dia 24 de gener del 2003, tal com preveu el calendari d’exàmens de la ETSEIT.

Càrrega de treball per l’estudiant:
  La càrrega lectiva per l’estudiant es calcula que serà de 4,00 hores per setmana

**Objectius i Contingut**

Objectius Generals:

L’assignatura **Enginyeria de Control 1** pretén:

A nivell de coneixements:

- Conèixer amb el funcionament operatiu de controladors PID
- Saber fer la sintonia de controladors comercials PID amb processos industrials.
- Conèixer en espai d’estat com es modelitza, analitza i controla sistemes dinàmics mono o multivariables lineals o linealitzables.

A nivell d’actituds:

- Fer notar la importància de la enginyeria de control de processos industrials i mostrar els múltiples beneficis (econòmics, socials, humans) que poden derivar de la seva correcta aplicació.
Objectius Específics:

En finalitzar el tema de *Fonaments de Control*, l’estudiant hauria de ser capaç de:
- Conèixer les accions i els aspectes operatius dels controladors comercials PID.
- Saber com s’implremenent i quan s’apliquen els controladors PID.
- Poder sintonitzar els paràmetres de controladors PID.

En finalitzar el tema de *Descripció matemàtica de sistemes dinàmics*, l’estudiant hauria de ser capaç de:
- Aplicar eines matemàtiques en espai d’estat per descriure en temps continu sistemes físics lineals o linealitzables.
- Aplicar eines matemàtiques en espai d’estat per descriure en temps discret sistemes físics lineals o linealitzables.
- Analitzar l’observabilitat i la controlabilitat de sistemes físics en representació d’estat.

En finalitzar el tema d’*Anàlisi de sistemes dinàmics*, l’estudiant hauria de ser capaç de:
- Determinar la resposta temporal de sistemes dinàmics en temps continu o discret a partir de la seva representació d’estat.
- Determinar la resposta freqüencial de sistemes dinàmics en temps continu o discret.
- Saber analitzar l’estabilitat de sistemes realimentats en temps continu i discret.
- Saber analitzar la precisió de sistemes realimentats en temps continu i discret.

En finalitzar el tema de *Disseny de controladors en espai d’estat*, l’estudiant hauria de ser capaç de:
- Dissenyar controladors per mètodes analític per realimentació d’estat.
- Dissenyar observadors del estat del sistema
- Combinar i aplicar a sistemes dinàmics controladors per realimentació d’estat i observadors d’estat.

Temari

Tema 1. **FONAMENTS DE CONTROL**

- Introducció i exemples
- Control on-off
- Accions del controlador PID
- Modificacions de les accions de control: PI+D, I+PD, PID+PWM
- Aspectes operatius: anti-windup, bumpless
- Implementació de controladors digitals PID
- Sintonia empírica de controladors PID
- Quan s’aplica i quan no controladors P,PI,PID
- Controladors comercials PID

Tema 2. **DESCRIPTIÓ MATEMÀTICA DE SISTEMES DINÀMICS**
Descripció externa i interna de sistemes continus
Descripció externa i interna de sistemes discrets
Controlabilitat i observabilitat de sistemes
Mòstreig i reconstrucció de senyals continus
Descripció externa i interna de sistemes continus i discrets

Tema 3. ANÀLISI DE SISTEMES DINÀMICS

- Resposta temporal de sistemes representats en espai d’estat
- Resposta temporal de sistemes en temps discret
- Resposta freqüencial de sistemes en temps discret
- Precisió de sistemes en temps discret
- Estabilitat de sistemes discrets
- Estabilitat de sistemes representats en espai d’estat

Tema 4. DISSENY DE CONTROLADORS EN ESPAI D’ESTAT

- Especificacions d’un sistema de control
- Disseny analític per assignació de pols
- Disseny de controladors per realimentació d’estat
- Disseny de observadors d’estat
- Combinació de controladors per realimentació d’estat i observadors