IEEE 802.11ah

sub 1GHz WLAN for IoT

What lies beneath Wi-Fi HaLow

Eduard Garcia-Villegas, Elena López-Aguilera
Dept. of Network Engineering
eduardg@entel.upc.edu
elopez@entel.upc.edu
Contents

- IEEE 802.11ah: sub 1GHz WLAN for IoT
 - Purpose, scope and use cases
 - PHY
 - MAC
 - Power saving
 - Other remarkable features
Purpose, scope and use cases

IEEE 802.11ah
sub 1GHz WLAN for IoT
What lies beneath Wi-Fi HaLow
IEEE 802.11ah: purpose

- Defines operation of license-exempt (ISM) IEEE 802.11 wireless networks in frequency bands below 1 GHz
 - excluding the TV White Space bands (802.11af).

- IEEE 802.11 WLAN user experience for fixed, outdoor, point to multi point applications

by Atmel Corp.
IEEE 802.11ah: scope

- Defines an OFDM PHY operating in the license-exempt bands below 1 GHz
 - and enhancements to the IEEE 802.11 MAC to support this PHY, and to provide mechanisms that enable coexistence with other systems in the bands (e.g. IEEE 802.15.4 P802.15.4g)

- The PHY is meant to optimize the **rate vs. range** performance of the specific channelization in a given band.
 - transmission range up to 1 km
 - data rates > 100 kbit/s

- The MAC is designed to support thousands of connected devices
IEEE 802.11ah: use cases

- **Use Case 1: Sensors and meters**
 - Smart Grid - meter to pole
 - Environmental monitoring
 - Industrial process sensors
 - Healthcare
 - Home/Building automation
 - Smart city

- **Use Case 2: Backhaul sensor and meter data**
 - Backhaul aggregation of sensor networks
 - Long point-to-point wireless links

- **Use Case 3: Extended range Wi-Fi**
 - Outdoor extended range hotspot
 - Outdoor Wi-Fi for cellular traffic offloading
The PHY

IEEE 802.11ah
sub 1GHz WLAN for IoT
What lies beneath Wi-Fi HaLow
Advantages of transmitting in sub 1 GHz:

- **Spectrum characteristics**
 - good propagation and penetration
 - large coverage area and one-hop reach
 - license-exempt, light licensing

- **Reliability:**
 - less congested frequency band
 - high sensitivity and link margin
 - available diversity – (frequency, time, space)

- **Battery operation**
 - long battery life
 - short data transmissions
Channelization:

- Each regulatory domain defines a different band and different tx power limits.

- Configurable bandwidth (channel bonding) of: 1, 2, 4, 8 and 16MHz.
 - Example of bandwidth options in the US.

IEEE 802.11ah: PHY (2)
IEEE 802.11ah: PHY (3)

- Inherited from IEEE 802.11ac (adapted to S1G):
 - OFDM
 - 10 times down-clocking .11ac
 - symbol duration x 10 → 40μs
 - Same number of OFDM subcarriers: bandwidth /10
 - 20MHz → 2MHz (52/64 data subcarriers)
 - MIMO + MU-MIMO
 - Up to 4 spatial streams (NSS > 2 are optional)
 - PHY rates ranging from 150kbps to 347Mbps
 - Min: MCS10 (BPSK 1/2 with repetition) x 1 stream x 1MHz x Long Guard Interval (GI)
 - MAX: MCS9 (256-QAM 5/6) x 4 streams x 16MHz x Short GI
IEEE 802.11ah: PHY (4)

- **Expected throughput vs. coverage**

```

```

1MHz
0.15 – 4.40Mbps x NSS

2MHz
0.65 – 8.67Mbps x NSS

4MHz
1.35 – 20.00Mbps x NSS

8MHz
2.92 – 43.33Mbps x NSS

16MHz
5.85 - 86.67Mbps x NSS

NSS = number of spatial streams

Mandatory for STAs (Globally interoperable)

Mandatory for APs

IEEE 802.11ah: sub 1GHz WLAN for IoT
IEEE 802.11ah: PHY (5)

- Expected throughput vs. coverage (min and max)

1MHz (outdoor prop.)

- Throughput (Mbps)
- Distance (m)

16MHz (outdoor prop.)

- Throughput (Mbps)
- Distance (m)

- Additional step thanks to MCS10 (only available with 1MHz and NSS 1)

NSS = number of spatial streams
IEEE 802.11ah
sub 1GHz WLAN for IoT
What lies beneath Wi-Fi HaLow
IEEE 802.11ah: MAC (1)

- Need to reduce overhead: low data rates + short frames (typical in some use cases)
 - Short MAC headers:
 - Removed fields (Duration, QoS control, HT control, optionally Sequence control)
 - Option to use only two addresses (instead of three)
 - Option to use 2B AID instead of 6B MAC address
 - Example: send frame with 100 Bytes of data
 - Legacy: 100B of data + 36B of header + FCS \rightarrow 26% overhead!
 - 11ah short MAC header: 100B of data + 14B of header + FCS \rightarrow 12% overhead

AID = Association ID (unique value assigned to a STA during association)
IEEE 802.11ah: MAC (2)

- Need to reduce overhead: low data rates + short frames (typical in some use cases)

 - NULL Data Packets (NDP)
 - Concentrate relevant information of control frames in the PHY header (avoid MAC header + payload)
 - Example:
 - 11ah transmission of 100B frame at lowest rate (1MHz x NSS 1 x MCS10) takes ~8ms
 » Legacy ACK: ~1.5ms (20% of the data frame!)
 » NDP ACK: ~0.5ms (6% of the data frame)

 - Short Beacons
 - Beacons are sent frequently at the lowest rate → short (more frequent) and full beacons (less frequent)
IEEE 802.11ah: MAC (3)

- Need to reduce overhead: low data rates + short frames (typical in some use cases)
 - Implicit acknowledgement (no ACK needed)
 - Bidirectional TXOP (BDT): extension of 802.11n’s Reverse Direction protocol (RD)
 - With **RD**: exchange of uplink and downlink frames during a single TXOP
 - With **BDT**: reception of next data frame implies that previous data was successfully received (no ACK needed).
 - Reduces channel access attempts, number of frames exchanged → Increases channel efficiency, battery lifetime
IEEE 802.11ah: MAC (4)

- Need to reduce overhead: low data rates + short frames (typical in some use cases)
 - Implicit acknowledgement (no ACK needed)

STA A (legacy)

DATA

ACK

DATA

ACK

DATA

STA B (legacy)

ACK

DATA

ACK

DATA

STA A (BDT Init.)

DATA

More Data = 1

Long Resp.

DATA

More Data = 0

Long Resp.

ACK

STA B (BDT Resp.)

DATA

More Data = 1

Long Resp.

DATA

More Data = 0

Normal Resp.

SIFS

DIFS + Backoff
IEEE 802.11ah: MAC (5)

- Need to support thousands of associated devices (increases coverage → increases reachable STAs)
 - Legacy 802.11 limited to 2007 associated STAs → 11ah increases to >8000
 - Hierarchical Association ID (AID) assignment (uses 13 bits): page/block/sub-block/STA
 - Allows grouping STAs according to different criteria
 » Device type, power constraints, application, location, etc.
 - Increased TIM size (one bit per each associated STA)
 - 1kB each Beacon frame!?! No, it can be compressed
IEEE 802.11ah: MAC (6)

- Need to support thousands of associated devices
 - Thousands of STAs → huge collision probability!
 - Restricted Access Window (RAW): regular RAW
 - Divide STAs into groups (AID)
 - Split channel access into time slots
 - Assign slots to groups (AP indicates RAW allocation and slot assignments in its Beacons)
 - STAs are only allowed to transmit during its group’s slot
 - *Cross Slot Boundary* option enables STAs to cross its assigned RAW slot to complete the ongoing exchange.
 - STAs can sleep during other groups’ slots
 - Different *backoff* rules apply during RAW (due to different contention conditions)
IEEE 802.11ah: MAC (7)

- Need to support thousands of associated devices
 - Thousands of STAs → huge collision probability!
 - Restricted Access Window (RAW): regular RAW

- Example:
 - 2MHz
 - MCS 5
 - NSS 1
 - Payload 1000B
 - Saturation
IEEE 802.11ah: MAC (8)

- Need to support thousands of associated devices
 - Thousands of STAs → huge collision probability!
 - Restricted Access Window (RAW): triggering frame RAW and resource allocation (an example)
 - RAW 1 reserved for triggering frames (e.g. PS-Poll for STAs with pending UL or DL frames)
 - AP’s scheduling algorithm distributes resources among STAs
 - AP starts RAW 2 with Resource Allocation frame (contains scheduling information)

* P: PS-Poll/Trigger frame, D: DATA, A: ACK, R: Resource Allocation
IEEE 802.11ah

sub 1GHz WLAN for IoT

What lies beneath Wi-Fi HaLow
IEEE 802.11ah: power saving (1)

- Need to reduce power consumption (battery powered devices)
 - PS mode allows STAs to remain inactive during \textit{max idle period} after which, the STA is disassociated.
 - Legacy max idle period: 16 bits (units of 1024ms) \(\rightarrow 1.024s \cdot (2^{16} - 1) > 18h \)
 - Some use cases require days/weeks of inactivity \(\rightarrow \) waste of energy sending keep-alive messages.
 - IEEE 802.11ah: two first bits used as scaling factor (1, 10, 10^3 or 10^4) \(\rightarrow 10^4 \cdot (2^{14} - 1) > 5 \text{ years sleeping!} \)
IEEE 802.11ah: power saving (2)

- Need to reduce power consumption (battery powered devices)
 - Beacons carry TIM bitmap (0 or 1 for each associated STA depending on whether that STAs has buffered frames) → Beacons are too big!!
 - TIM segmentation
 - Some Beacons carry bitmap at page/block level
 » Rest of the Beacons carry a partial bitmap at STA level
 - A STA calculates the moment when the Beacon with its corresponding TIM is going to be sent
 » Sleep until then!
IEEE 802.11ah: power saving (3)

- Need to reduce power consumption (battery powered devices)
 - Beacons carry TIM bitmap → even receiving and decoding Beacons consumes energy!!
 - Target Wake Time (TWT): intended for STAs rarely transmitting/receiving data (i.e. TWT STAs)
 - TWT STA and AP negotiate when, for how long and how frequently the TWT STA will be awake.
 - AP ↔ STA frame exchanges occur only during those TWT service periods.
 - Recall that Beacons are used to distribute AP’s timer reference for synchronization purposes
 - Missing beacons → other synchronization mechanisms are needed for TWT STAs
Other remarkable features

IEEE 802.11ah
sub 1GHz WLAN for IoT
What lies beneath Wi-Fi HaLow
Multihop relay operation

- Extend (root) AP coverage
- STAs will require lower tx power
- STAs may use faster MCS (less tx time)
IEEE 802.11ah: other features (2)

Fast association and authentication

- When AP (re)boots → thousands of STAs simultaneously requesting association/authentication collapse channel access!!
 - **Centralized approach**
 - STAs choose a number [0, 1023] at random
 - AP sets an Authentication Control Threshold (announced in Beacons)
 - STAs with random number < threshold are allowed to attempt authentication (otherwise, wait for next Beacon)
 - **Distributed approach**
 - STAs wait a random time (e.g. several Beacon intervals) before attempting authentication
 - Each unsuccessful attempt increases window
Subchannel selective transmission (SST)

- STAs with limited capabilities (e.g. sensor nodes) may support only 1 and 2MHz (mandatory)
 - APs are likely to support wider bandwidth
- SST APs allow the use of subchannels within a wider bandwidth
 - AP announces in Beacons which subchannels are temporarily available for SST
 - Beacons are duplicated on a set of different subchannels
 - STAs choose the best subchannel (e.g. less affected by fading)
IEEE 802.11ah: summary

LONG RANGE
- Lower frequency band
- Longer OFDM symbols
- Robust modulation and coding schemes

SCALABILITY
- Support for >8000 nodes
- Grouping
- RAW access

EFFICIENCY
- Reduced frame formats
- Efficient frame exchanges
- Enhanced power saving mechanisms

LONG RANGE SCALABILITY EFFICIENCY
Special Thanks to:
M. Shahwaiz Afaqui
Víctor H. Baños

IEEE 802.11ah
sub 1GHz WLAN for IoT
What lies beneath Wi-Fi HaLow