EFFICIENT Wi-Fi deployments

The basics

Just some common sense rules put together in a nice set of colorful slides

Eduard Garcia-Villegas
Dept. of Network Engineering
eduardg@entel.upc.edu
Efficient Wi-Fi deployments

- Big vs. small
- Analyze requirements
- #STAs and #Needed radios
- Available channels
- Reuse factor
- Dimensioning cells
- Optimization
In the era of ubiquitous Internet...

Wireless internet access can be a traumatic experience due to
- Many concurrent users (dense scenarios)
- Coexistence (older/slower devices, other technologies sharing the band, etc.)
- ...
- POOR DESIGN
Coverage-driven design

- In the past: maximize cell size && minimize costs
 - Optimize AP location and increase cell size → less APs needed (lower cost)
 - Problems:
 - more devices per AP (lower per STA throughput)
 - Reduced efficiency due to higher collision probability
Coverage-driven design

- In the past: maximize cell size && minimize costs
 - Optimize AP location and increase cell size \rightarrow less APs needed (lower cost)
 - Problems:
 - Longer distances AP \leftrightarrow STA mean worse signal quality and, hence, more robust (slower) PHY rates are used
 » Capacity of the whole cell is reduced
 » Longer tx time \rightarrow more power consumed and more collisions
Coverage-driven design

- In the past: maximize cell size & minimize costs
 - Optimize AP location and increase cell size → less APs needed (lower cost)
 - Problems:
 - More hidden nodes → more collisions
 - Power mismatch: AP (high tx power) and STA (low tx power)
 » STA can hear the AP, but the AP can't hear the STA
 » If you want a big cell, increase the antenna gain, not the tx power!
Wi-Fi deployments: big vs. small (4)

- **Coverage-driven design**
 - In the past: maximize cell size && minimize costs
 - Optimize AP location and increase cell size → less APs needed (lower cost)
 - It has problems in present (dense) deployments.

- **Other key aspects**
 - KPI requirements
 - Client and AP capabilities
 - Are modern ≥ 11n capable (how many antennas)? Coexistence with 11a/b/g? Dual band?
 - Propagation phenomena
 - Outdoor/indoor? APs mounted on ceiling, walls or floor?
 - User density
Efficient Wi-Fi deployments

The basics

Analyze requirements
Wi-Fi deployments: requirements

- The first thing is to identify key performance indicators (KPI)
 - Minimum bandwidth required to satisfy supported applications
 - Maximum latency tolerated
 - Expected Min-Avg-Max number of active devices

- Examples (per-user requirements):
 - School
 - **BW**: <3Mbps (video streaming; desktop/file sharing)
 - **Delay tolerance**: low (video streaming; intranet login)
 - **Users**: Min-Avg-Max = up to 30 per classroom
 - Convention center (1500 att.)
 - **BW**: <1 Mbps (web browsing; e-mail)
 - **Delay tolerance**: Medium
 - **Users**: “educated guess”
 - 70% will connect Wi-Fi device
 - 50% simultaneously
 - $1500 \times 0.70 \times 0.5 = 525$
Wi-Fi deployments: #STAs and radios

- Capacity-driven design (rule of thumb)
 - **Example 1** school (<3Mbps x 30 users per classroom):
 - 20 STAs per AP → each classroom served by two radios (two APs or one dual band AP)
 - Assume homogeneous (IT-controlled) 11n 2x2 devices
 - Good signal quality (high rates available) → STAs achieve ~80Mbps of net throughput (isolated)
 - Allow future growth: AP utilization ≤ 75% → 75/(100*3Mbps/80Mbps) = 20 STAs per AP
 - **Example 2** convention center (<1Mbps x 525 users)
 - 32 STAs per AP → 525/32 = 16 – 17 radios
 - Assume heterogeneous (BYOD) devices
 - Diverse signal quality → STAs achieve ~40Mbps of net throughput
 - AP utilization ≤ 80% → 80/(100*1Mbps/40Mbps) = 32 STAs/AP
Efficient Wi-Fi deployments

The basics

Available channels
Wi-Fi deployments: channels (1)

- Capacity limited by the scarcity of available spectrum
 - 2.4GHz ISM band
 - Only three non-overlapping channels (1,6,11)
 - Four (almost) non-overlapping channels (1,5,9,13) \(\to \text{where available} \)
Wi-Fi deployments: channels (2)

- Capacity limited by the scarcity of available spectrum
 - 2.4GHz ISM band
 - Only three non-overlapping channels (1, 6, 11)
 - Four (almost) non-overlapping channels (1, 5, 9, 13) → where available
 - Not available in all regulatory domains (e.g. North Americas)
 - Many devices default to Americas config. → will see coverage gaps in the areas served by APs in Ch13.
 - Highly congested: coexistence with WPANs, cordless phones, baby monitors, microwave ovens...
 - 5GHz ISM band
 - 15-21 non-overlapping channels in different sub bands
 - Highly variable from one regulatory domain to another
 - Some channels only for indoor use, others require DFS
 - Different tx power limits...
Efficient Wi-Fi deployments

The basics

Reuse Factor
Wi-Fi deployments: reuse factor

#Radios Needed

- **Reuse Factor** = \frac{\text{Available Channels}}{	ext{Reuse Factor}}

- If Reuse Factor ≤ 1 → LUCKY YOU!
- Otherwise, each channel is shared among **Reuse Factor** APs → INTERFERENCE!

 - Minimize interference by.
 - Carefully dimensioning cells
 - Smart channel management
Efficient Wi-Fi deployments

The basics
Dimension the cell
Wi-Fi deployments: dimension cells (1)

- What is the cell radius?
 - Max distance at which frames can be decoded
 - P_t is tx power
 - Decreases with MCS (to avoid distortion)
 - S_r is receiver sensitivity
 - Increases with MCS
 - R_r reception range

 $$P_r \approx \frac{P_t}{d^\alpha} \rightarrow R_r \approx \left(\frac{P_t}{S_r} \right)^{1/\alpha}$$

 - d is the distance tx \rightarrow rx
 - α is the path loss exponent

 - Different radius depending on targeted MCS
Wi-Fi deployments: dimension cells (2)

- How to set cell radius for Wi-Fi small cells?
 - Reduce AP’s tx power
 - Reduces interference over other cells
 - Avoids AP/STA power mismatch
 - Reduces suitable rates
Wi-Fi deployments: dimension cells (3)

- How to set cell radius for Wi-Fi small cells?
 - Reduce AP’s tx power
 - Reduces interference over other cells
 - Avoids AP/STA power mismatch
 - Reduces suitable rates
 - Increase min tx rate of the cell
 - Reduces performance anomaly and allows higher average rate
 - Avoid “sticky” STAs
 - Possible unsupported devices
 - Accept, at least, 802.11b@11Mbps?
Wi-Fi deployments: dimension cells (4)

- BUT...interference goes beyond the cell edge
 - Carrier Sense Range \((R_c) \)
 - Max distance at which frame preamble can be detected and, hence, prevent concurrent transmissions in the same channel.
 - Only 3dB SNR is enough! (>200m outdoors)
 - Behavior improved in IEEE 802.11ax
 - Beyond Carrier Sense Range
 - Transmitted frames are just noise
Wi-Fi deployments: dimension cells (5)

- Coverage strategy for maximal densification
 - Reduce reuse distance
 - **Low gain** directional antennas
 - **AP placement**
 - **Overhead**: AP installed on the ceiling/lamp posts facing down
 - **Side**: AP installed on walls/pillars
 - **Floor**: under floor/under seat (stadiums or auditoriums)
 - Even consider mounting APs behind walls/obstacles and avoid LoS (enriches multipath diversity leveraged by MIMO)
Efficient Wi-Fi deployments

The basics

Finishing touches
Wi-Fi deployments: channel plan (1)

- Dynamic and unpredictable spectrum utilization
 - License-free bands!
- Intelligent channel assignments are required
Automatic and dynamic channel assignments aimed at reducing interference → maximizing performance

- APs gather information of the environment
 - Number of APs detected
 - Power received from neighboring APs
 - Portion of time the channel was reported busy/idle by CCA
Automatic and dynamic channel assignments aimed at reducing interference → maximizing performance

- APs gather information of the environment
 - Number of APs detected
 - Power received from neighboring APs
 - Portion of time the channel was reported busy/idle by CCA
- Ideally, client STAs too (and report via IEEE 802.11k)
Automatic and dynamic channel assignments aimed at reducing interference → maximizing performance

- APs (ideally, STAs too) gather information of the environment
 - Number of APs detected
 - Power received from neighboring APs
 - Portion of time the channel was reported busy/idle by CCA

- Distributed approach (autonomous APs)
 - Each AP periodically (and asynchronously) scans the medium and chooses the least congested channel → local optimum
 - Alternatively, APs collaborate (exchange information) to produce better decisions

- Centralized approach (controller-based)
 - APs send periodic reports to a controller
 - Knowing the whole picture and having more resources (i.e. CPU, memory, etc.) controller runs a sophisticated optimization algorithm → global optimum
Wi-Fi deployments: channel plan (5)

- Other considerations
 - Partially overlapping channels
 - Chaotic environments (many rogue/unmanaged APs in random channels): take the most of the spectrum by allowing the whole channel set (not only non-overlapping)
 - Channel bonding
 - 40MHz or 80MHz channels provide higher rates but require more free spectrum → not recommended in dense scenarios
 - Single Channel Architecture (SCA), aka Channel Blanket
 - All APs use the same channel and the same (virtual) BSSID so that all STAs “see” one single AP
 - Seamless handover: controller decides AP delivering DL traffic
 - Larger collision domain (although DL is scheduled by controller)
Wi-Fi deployments: load balancing (1)

- Wi-Fi users are quasi-static and tend to concentrate in space & time → *hot spots*
 - Clients (i.e. traffic) unevenly distributed among APs
 - Some APs (channels) congested and some others underutilized
 - Load Balancing techniques could increase ability to satisfy QoS requirements
 - Load Balancing techniques widely used in cellular networks
 - Take advantage of overlapping areas between neighboring cells
 - Clients can be served by several BSs
 - System decides the best BS for a client depending on BSs’ loads
 - Not directly applicable to Wi-Fi WLANs
 - Clients decide association and roaming, not the network
Load balancing with client-driven association in WLANs

- Typically, client STAs decide best AP based on RSSI measurements (i.e. strongest Beacon or Probe Response Frame)
 - Uneven distribution of users → uneven distribution of load
- Some APs broadcast load information (BSS Load element) and some clients do care about it
- Network-oriented client-driven load balancing
 - Band steering: encourage utilization of the 5GHz band
 - If AP or controller detect a STA sending Probe Requests in the two bands → do not send responses through 2.4GHz radios, only through 5GHz
 - Disassociation/blacklisting
 - Network decides STA’s best AP → the rest of APs ignore that STA requests (if already associated, current AP sends Disassociation frame)
 - Cell Breathing: adapt size of the cell
 - Congested APs reduce tx power of Beacons and Probe Responses → underutilized APs do the opposite
Example of cell breathing

- Reduce power of Beacons and Probe Responses
 - do not reduce power of data frames since this will reduce suitable rates and increase error rate
Example of cell breathing

- Reduce power of Beacons and Probe Responses
 - do not reduce power of data frames since this will reduce suitable rates and increase error rate
Don’t forget the wires!

- Data/power wires to APs
 - If not...multihop or mesh-based wireless distribution system
- Uplink pipe
 - Imagine all this headache for just a DSL WAN connection...
Some references (1)

- **Load balancing**

- **Sensitivity control**
Some references (2)

- Channel management
Course offered at:

Master's degree in Applied Telecommunications and Engineering Management

IoT & Ubiquitous IP