Àlgebra abstracta (Versió 2)

Temari

Grups



Conceptes bàsics. Subgrups normals. Teoremes d'isomorfisme. Grups simètric i alternat. Grups simples. Simplicitat de l'alternat. Grups resolubles. Teorema de Jordan-Hölder. Grups que operen en un conjunt. Accions per translació i conjugació. Representacions de permutació. p-grups. Teoremes de Sylow. Aplicacions.



Anells



Divisibilitat. Anells factorials, principals, euclidians. Polinomis sobre anells factorials. Polinomis simètrics. Teorema fonamental. Discriminant i resultant.



Extensions de cossos



Extensions finites i algebraiques. Adjunció d'elements. Teorema de l'element primitiu. Cos de descomposició. Clausura algèbrica. Extensions normals. Separabilitat.



Teoria de Galois



Grup de Galois. Teorema fonamental de la teoria de Galois. Grup de Galois d'un polinomi. Resolvents. Càlculs explícits. Arrels de la unitat. Extensions ciclotòmiques. Extensions cícliques. Equacions resolubles per radicals. Resolució per graus 2, 3 i 4. No-resolubilitat de l'equació general de grau 5. Aplicacions: construccions amb regle i compàs, els tres problemes clàssics. Constructibilitat de polígons regulars.