Geometria diferencial

Temari

1. Corbes al pla i l'espai



Corbes parametritzades. Recta tangent. Exemples. Corbes regulars, longitud d'arc. Curvatura, vector normal, vector binormal, torsió, triedre i fórmules de Frenet. Teorema fonamental de la teoria de corbes.



2. Teoria elemental de superfícies



Superfícies regulars, parametritzacions. Funcions diferenciables sobre superfícies, punts crítics. Pla tangent, recta normal. Diferencial d'una aplicació, difeomorfismes. Geometria en el pla tangent: primera forma fonamental. Geometria en la superfície: mesura de longituds, angles i àrees.



3. Curvatura de Gauss



L'aplicació de Gauss. La diferencial de l'aplicació de Gauss i la segona forma fonamental. Curvatura normal: Teorema de Meusnier. Curvatures principals, línies de curvatura: teoremes de Rodrigues i d'Euler. Curvatures de Gauss i mitjana. Classificació dels punts d'una superfície. Direccions i corbes asimptòtiques. Indicatriu de Dupin.



4. Exemples de superfícies



Fórmules bàsiques per al càlcul de la segona forma fonamental: equacions de Weingarten. Superfícies planes. Superfícies reglades. Quàdriques. Superfícies de revolució. Superfícies mínimes.



5. Equacions fonamentals de les superfícies



Isometries, isometries locals. Símbols de Christoffel. Fórmula de Gauss i Teorema Egregi. Equacions de compatibilitat de Codazzi-Mainardi. Teorema de Bonnet.



6. Geometria sobre les superfícies



Derivada covariant, transport paral·lel. Curvatura geodèsica, geodèsiques, fórmula de Liouville. Aplicació exponencial, propietat minimal de les geodèsiques. Fórmula de l'excés/defecte per a la suma dels angles d'un triangle. El Teorema de Gauss-Bonnet i aplicacions.



7. Alguns resultats globals



Superfícies de curvatura constant: el teorema de Minding. Superfícies completes. Superfícies completes de curvatura constant: l'esfera, el pla i els cilindres, i el teorema de Hilbert. Mètriques i superfícies: el tor pla i les superfícies hiperbòliques de curvatura -1. Geodèsiques en superfícies completes: el teorema de Hopf-Rinow.



8. Introducció a les varietats diferencials



Varietats diferencials, funcions diferenciables. Espai tangent, diferencial d'una funció. Valors regulars i subvarietats. Exemples.