
ar
X

iv
:q

ua
nt

-p
h/

03
01

07
9

v1

16
 J

an
 2

00
3

Grover’s Algorithm: Quantum Database Search∗

C. Lavor

Instituto de Matemática e Estat́ıstica

Universidade do Estado do Rio de Janeiro - UERJ

Rua São Francisco Xavier, 524, 6oandar, bl. D, sala 6018,

Rio de Janeiro, RJ, 20550-900, Brazil

e-mail: carlile@ime.uerj.br

L.R.U. Manssur, R. Portugal

Coordenação de Ciência da Computação

Laboratório Nacional de Computação Cient́ıfica - LNCC

Av. Getúlio Vargas 333, Petrópolis, RJ, 25651-070, Brazil

e-mail: {leon,portugal}@lncc.br

July 25, 2003

Abstract

We review Grover’s algorithm by means of a detailed geometrical interpre-
tation and a worked out example. Some basic concepts of Quantum Me-
chanics and quantum circuits are also reviewed. This work is intended for
non-specialists which have basic knowledge on undergraduate Linear Alge-
bra.

1 Introduction

The development of quantum software and hardware is an exciting new area posing

extremely difficult challenges for researchers all over the world. It promises a new era in

Computer Science, but it is not clear at all whether it will be possible to build a hardware

of reasonable size. Quantum hardware of macroscopic sizes suffer the decoherence effect

which is an unsurmountable tendency to behave classically.

An important landmark in hardware development is the experience performed at

IBM’s lab in San Jose, California, which factored the number 15 into its prime factors

using a quantum algorithm (Shor’s algorithm [1]) executed in a molecule, perfluorobu-

tadienyl iron complex [2]. This “quantum computer” has seven “quantum bits”. Such

∗Contents based on lecture notes from graduate courses in Quantum Computation given at LNCC.

1

insignificant amount of bits that could be manipulated in the experience shows the chal-

lenge in hardware development.

Quantum software development is facing difficulties too, though the superiority of

quantum circuits over classical ones was already established. In this context, Grover’s

algorithm [3, 4] plays an important role, since it provides a proof that quantum computers

are faster than classical ones in database searching. The best classical algorithm for

an unstructured database search has complexity O(N), without possibility of further

improvement, while the best quantum algorithm has complexity O(
√
N).

Historically, Deutsch’s algorithm [5] was the first example of a quantum circuit faster

than its classical counterpart, while Bernstein and Vazirani [6] and Simon [7] provided

the first examples of quantum algorithms exponentially faster than their classical coun-

terparts. These algorithms determine some sort of functions’ periods and their only

application seems to be for proving that quantum circuits are faster than classical ones.

Some of the most impressive results so far in quantum computation are the Shor’s al-

gorithms [1] for factoring integers and for finding discrete logarithms, which also provided

an exponential speed up over the known classical algorithms. Shor’s results attracted a

lot of attention because they render most of current cryptography methods useless, if we

assume it is possible to build quantum hardware of reasonable size.

This work is an introductory review of Grover’s algorithm. We have put all our efforts

to write as clear as possible for non-specialists. We assume familiarity with undergraduate

Linear Algebra, which is the main mathematical basis of Quantum Mechanics. Some

previous knowledge of Quantum Mechanics is welcome, but not necessary for a persistent

reader. The reader can find further material in [8, 9, 10, 11, 12, 13].

Section 2 reviews basic notions about classical computers preparing for the quantum

generalization, which is presented in Section 3. Section 4 introduces the notion of quan-

tum circuits and presents some basic examples. Section 5 describes Grover’s algorithm.

Sections 6 and 8 give details of the geometrical interpretation while Section 7 presents a

worked out example. Finally, Section 9 shows the decomposition of Grover’s circuit in

terms of the universal gates.

2 The Classical Computer

A classical computer can be understood in a very broad sense as a machine that reads a

certain amount of data, encoded as zeroes and ones, performs calculations, and prints in

the end output data as zeroes and ones again. Zeroes and ones are states of some physical

quantity, the electric potential in classical computers. Internally, a zero is a state of low

electric potential and a one is a state of high electric potential. This point is crucial to

the generalization we will discuss ahead.

Zeroes and ones form a binary number which can be converted to decimal notation.

Let us think of the computer as calculating a function

f : {0, ...,N − 1} ջ {0, ...,N − 1},

2

bit0bit0

bit1bit1

bitn−1 bitn−1

f

Figure 1: Outline of the classical computer.

where N is a number of the form 2n (n is the number of bits in the computer memory).

We assume without loss of generality that the domain and codomain of f are of the

same size (f is a function because one input cannot generate two or more outputs). We

represent the calculation process in Fig. 1, where on the left hand side we have the value

of each bit (zero or one). The process of calculation goes from left to right, and the

output is stored in the same bits on the right hand side.

Usually f is given in terms of elementary blocks that can be implemented in practice

using transistors and other electrical devices. The blocks are the AND, OR and NOT

gates, known as universal gates (This set could be reduced further since OR can be written

in terms of AND and NOT). For example, the circuit to add two one-bit numbers modulo

2 is given in Fig. 2. The possible inputs are 00, 01, 10, 11, and the corresponding outputs

are 00, 01, 11, 10. The inputs are prepared creating electric potential gaps, which create

electric currents that propagate through the wires towards right. The gates are activated

as time goes by. The meter symbols on the right indicate that measurements of the

electric potential are performed, which tell whether the output value of each bit is zero

or one. The second bit gives the result of the calculation. The wire for the output of

the first bit is artificial and unnecessary; at this point, it is there simply to have the

codomain size of the function f equal to the domain size. This circuit, without the first

bit output wire, is the circuit for the XOR (exclusive OR) gate in terms of the universal

OR

OR

NOT

NOT

AND

Figure 2: The circuit to add two one-bit numbers modulo 2.

3

gates.

The circuit of Fig. 2 is irreversible, since the gates AND and OR are irreversible. If

the output of the AND gate is 0, nobody can tell what was the input, and similarly when

the output of the OR gate is 1. This means that the physical theory which describes

the processes in Fig. 2 must be irreversible. Then, the AND and OR gates cannot be

straightforwardly generalized to quantum gates, which must be reversible ones.

However, the circuit of Fig. 2 can be made reversible. Although the following descrip-

tion is unnecessary from the classical point of view, it helps the quantum generalization

performed in the next sections. We employ the controlled-NOT (CNOT) gate of Fig. 3.

The bits a and b assume values either 0 or 1. The value of the first bit (called the control

bit) never changes in this gate; the second bit (called the target bit) is flipped only if

a = 1. If a = 0, nothing happens to both bits. The gate ⊕ is a NOT gate controlled

by the value of the first bit. Now it is easy to verify that the value of the second bit for

this gate is a+ b (mod 2). The CNOT gate is not a universal building block for classical

circuits, but its quantum counterpart is a basic block of quantum circuits.

We have described the reversible counterpart of the XOR gate. What is the reversible

counterpart of the AND gate? The answer employs the Toffoli gate (Fig. 4) which is a

generalization of the CNOT gate with two control bits instead of one. The value of the

third bit (target) is inverted only if both a and b are 1, otherwise it does not change.

The following table describes all possible inputs and the corresponding outputs:

000 ջ 000

001 ջ 001

010 ջ 010

011 ջ 011

100 ջ 100

101 ջ 101

110 ջ 111

111 ջ 110

The AND gate can be replaced by the Toffoli gate simply by taking c = 0. The output of

the third bit is then a AND b (The reversible circuit for the OR gate is a little cumbersome

because it requires more than one Toffoli gate, so we will not describe it here).

Another feature implicit in Fig. 2 that cannot be performed in quantum circuits

a a

b a+ b (mod 2)

Figure 3: Classical controlled-NOT (CNOT) gate.

4

aa

bb

c c+ ab (mod 2)

Figure 4: Classical Toffoli gate.

is FANOUT. Note that there are bifurcations of wires; there is no problem to do this

classically. However, this is forbidden in quantum circuits, due to the “no cloning”

theorem (see [10] p.162). Classical FANOUT can be obtained from the CNOT gate by

taking b = 0. The value of the first bit is then duplicated.

Consider again Fig. 1. If the computer has n bits, there are 2n possible inputs. For

each input there are 2n possible outputs, therefore the number of possible functions f

that can be calculated is 2n2n

. All these functions can be reduced to circuits using the

universal gates. That is what a classical computer can do: calculate 2n2n

functions. This

number is astronomical for computers with 1 gigabyte, that is a typical memory size for

good personal computers nowadays.

Another important issue is how fast can the computer calculate these functions. The

answer depends on the number of gates used in the circuit for f . If the number of

elementary gates increases polynomially with n, we say that the circuit is “efficient”. If

the number of gates increases exponentially with n, the circuit is “inefficient”. This is

a very coarse method to measure the efficiency, but it is useful for theoretical analysis

when n is large. Note that we are thinking of computers of variable size, which is not

the case in practice. In fact, instead of referring to actual computers, it is better to

use a Turing machine, which is an abstract model for computers and softwares as a

whole [14]. Similarly, quantum computers and their softwares are abstractly modeled as

the quantum Turing machine [15, 6]. The classical theory of complexity classes and its

quantum counterpart address this kind of problems.

All calculations that can be performed in a classical computer can also be performed in

a quantum computer. One simply replaces the irreversible gates of the classical computer

with their reversible counterparts. The new circuit can be implemented in a quantum

computer. But there is no advantage in this procedure: why build a very expensive

quantum machine which behaves classically? The appeal of quantum computation is the

possibility of quantum algorithms faster than classical ones. The quantum algorithms

must use quantum features not available in classical computers, such as quantum par-

allelism and entanglement, in order to enhance the computation. On the other hand, a

näive use of quantum features does not guarantee any improvements. So far, there are

only two classes of successful quantum algorithms: the database search algorithms and

the algorithms for finding the generators of a normal subgroup of a given group. Shor’s

algorithms for integer factorization and discrete logarithm are special cases of this latter

class.

5

3 The Quantum Computer

In quantum computers, one is allowed to use quantum states instead of classical ones.

So, the electric potential can be replaced by some quantum state: the quantum bit (qubit

for short). Just as a bit has a state 0 or 1, a qubit also has a state |0〉 or |1〉. This is called

the Dirac notation and it is the standard notation for states in Quantum Mechanics. The

difference between bits and qubits is that a qubit |ψ〉 can also be in a linear combination

of states |0〉 and |1〉:
|ψ〉 = α|0〉 + β|1〉. (1)

This state is called a superposition of the states |0〉 and |1〉 with amplitudes α and β

(α and β are complex numbers). Thus, the state |ψ〉 is a vector in a two-dimensional

complex vector space, where the states |0〉 and |1〉 form an orthonormal basis, called the

computational basis (see Fig. 5 in the real case).

The state |0〉 is not the zero vector, but simply the first vector of the basis. The

matrix representations of the vectors |0〉 and |1〉 are given by

|0〉 =

[

1

0

]

and |1〉 =

[

0

1

]

.

What is the interpretation of α and β in Eq. (1)? Quantum mechanics tells us that if one

measures the state |ψ〉 one gets either |0〉, with probability |α|2, or |1〉, with probability

|β|2. That is, measurement changes the state of a qubit. In fact, any attempt to find out

the amplitudes of the state |ψ〉 produces a nondeterministic collapse of the superposition

to either |0〉 or |1〉. If |α|2 and |β|2 are probabilities and there are only two possible

outputs, then

|α|2 + |β|2 = 1. (2)

|1〉

|ψ〉

|0〉

Figure 5: Computational basis for the case α, β real. In the general case (α, β

complex) there is still a geometrical representation called the Bloch sphere [9].

6

Calculating the norm of |ψ〉, Eq. (2) gives

|| |ψ〉 || =
√

|α|2 + |β|2 = 1.

If a qubit is in state |ψ〉 given by Eq. (1), there are two ways it can interact. The

first one is a measurement. This forces the state |ψ〉 to collapse to either |0〉 or |1〉 with

probabilities |α|2 and |β|2, respectively. Note that the measurement does not give the

value of α and β. They are inaccessible via measurements unless one has many copies of

the same state. The second kind of interaction does not give any information about the

state. In this case, the values of α and β change keeping the constraint (2). The most

general transformation of this kind is a linear transformation U that takes unit vectors

into unit vectors. Such transformation is called unitary and can be defined by

U †U = UU † = I,

where U † = (U∗)T (∗ indicates complex conjugation and T indicates the transpose oper-

ation).

To consider multiple qubits it is necessary to introduce the concept of tensor product.

Suppose V and W are complex vector spaces of dimensions m and n, respectively. The

tensor product V ⊗ W is an mn-dimensional vector space. The elements of V ⊗ W

are linear combinations of tensor products |v〉 ⊗ |w〉, satisfying the following properties

(z ∈ C, |v〉, |v1〉, |v2〉 ∈ V , and |w〉, |w1〉, |w2〉 ∈W):

1. z(|v〉 ⊗ |w〉) = (z|v〉) ⊗ |w〉 = |v〉 ⊗ (z|w〉),

2. (|v1〉 + |v2〉) ⊗ |w〉 = (|v1〉 ⊗ |w〉) + (|v2〉 ⊗ |w〉),

3. |v〉 ⊗ (|w1〉 + |w2〉) = (|v〉 ⊗ |w1〉) + (|v〉 ⊗ |w2〉).

We use also the notations |v〉|w〉, |v,w〉 or |vw〉 for the tensor product |v〉 ⊗ |w〉. Note

that the tensor product is non-commutative, so the notation must preserve the ordering.

Given two linear operators A and B defined on the vector spaces V and W , respec-

tively, we can define the linear operator A⊗B on V ⊗W as

(A⊗B)(|v〉 ⊗ |w〉) = A|v〉 ⊗B|w〉, (3)

where |v〉 ∈ V and |w〉 ∈W . The matrix representation of A⊗B is given by

A⊗B =

⌈



⌊

A11B ⋅ ⋅ ⋅ A1mB
...

. . .
...

Am1B ⋅ ⋅ ⋅ AmmB

⌉



⌋
, (4)

where A is an m·m matrix and B is a n · n matrix (We are using the same notation

for the operator and its matrix representation) . So the matrix A ⊗ B has dimension

mn·mn. For example, given

A =

[

0 1

1 0

]

and B =

⌈



⌊

1 0 0

0 1 0

0 0 1

⌉



⌋
,

7

the tensor product A⊗B is

A⊗B =

[

0 1

1 0

]

⊗

⌈



⌊

1 0 0

0 1 0

0 0 1

⌉



⌋
=

⌈















⌊

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⌉















⌋

.

The formula (4) can also be used for non square matrices, such as the tensor product of

two vectors. For example, the tensor product |0〉 ⊗ |1〉 is given by

|0〉 ⊗ |1〉 = |01〉 =

[

1

0

]

⊗
[

0

1

]

=

⌈







⌊

0

1

0

0

⌉







⌋

.

The notations |ψ〉⊗k and A⊗k mean |ψ〉 and A tensored with themselves k times, respec-

tively.

The general state |ψ〉 of two qubits is a superposition of the states |00〉, |01〉, |10〉,
and |11〉:

|ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉, (5)

with the constraint

|α|2 + |β|2 + |γ|2 + |δ|2 = 1.

Regarding the zeroes and ones as constituting the binary expansion of an integer, we can

replace the representations of states

|00〉, |01〉, |10〉, |11〉,

by the shorter forms

|0〉, |1〉, |2〉, |3〉,

in decimal notation.

In general, the state |ψ〉 of n qubits is a superposition of the 2n states |0〉, |1〉, ...,
|2n − 1〉:

|ψ〉 =

2n−1
∑

i=0

αi|i〉,

with amplitudes αi constrained to

2n−1
∑

i=0

|αi|2 = 1.

The orthonormal basis {|0〉 , . . . , |2n − 1〉} is called computational basis. As before, a

measurement of a generic state |ψ〉 yields the result |i0〉 with probability |αi0 |2, where

8

0 ≤ i0 < N . Usually, the measurement is performed qubit by qubit yielding zeroes or

ones that are read together to form i0. We stress again a very important feature of the

measurement process. The state |ψ〉 as it is before measurement is inaccessible unless it

is in the computational basis. The measurement process inevitably disturbs |ψ〉 forcing it

to collapse to one vector of the computational basis. This collapse is non-deterministic,

with the probabilities given by the squared norms of the corresponding amplitudes in

|ψ〉.
If we have two qubits, one in the state

|ϕ〉 = a|0〉 + b|1〉

and the other in the state

|ψ〉 = c|0〉 + d|1〉,

then the state of the pair |ϕ〉|ψ〉 is the tensor product

|ϕ〉 ⊗ |ψ〉 = (a|0〉 + b|1〉) ⊗ (c|0〉 + d|1〉) (6)

= ac|00〉 + ad|01〉 + bc|10〉 + bd|11〉.

Note that a general 2-qubit state (5) is of the form (6) if and only if

α = ac,

β = ad,

γ = bc,

δ = bd.

¿From these equalities we have that a general 2-qubit state (5) is of the form (6) if and

only if

αδ = βγ.

Thus, the general 2-qubit state is not a product of two 1-qubit states. Such non-product

states of two or more qubits are called entangled states, for example, (|00〉 + |11〉)/
√

2.

There is an inner product between two n-qubit states |ϕ〉 and |ψ〉, written in the form

〈ϕ|ψ〉, which is defined by the following rules in a complex vector space V :

1. 〈ψ|ϕ〉 = 〈ϕ|ψ〉∗,

2. 〈ϕ|(a|u〉 + b|v〉)〉 = a〈ϕ|u〉 + b〈ϕ|v〉,

3. 〈ϕ|ϕ〉 > 0 if |ϕ〉 6= 0,

where a, b ∈ C and |ϕ〉, |ψ〉, |u〉, |v〉 ∈ V. The norm of a vector |ϕ〉 is given by

|| |ϕ〉 || =
√

〈ϕ|ϕ〉.

9

The notation 〈ϕ| is used for the dual vector to the vector |ϕ〉. The dual is a linear

operator from the vector space V to the complex numbers, defined by

〈ϕ|(|v〉) = 〈ϕ|v〉, ∀|v〉 ∈ V.

Given two vectors |ϕ〉 and |ψ〉 in a vector space V , there is also an outer product

|ψ〉〈ϕ|, defined as a linear operator on V satisfying

(|ψ〉〈ϕ|)|v〉 = |ψ〉〈ϕ|v〉, ∀|v〉 ∈ V.

If |ϕ〉 = a|0〉 + b|1〉 and |ψ〉 = c|0〉 + d|1〉, then the matrix representations for inner

and outer products are:

〈ϕ|ψ〉 =
[

a∗ b∗
]

[

c

d

]

= a∗c+ b∗d,

|ϕ〉〈ψ| =

[

a

b

]

[

c∗ d∗
]

=

[

ac∗ ad∗

bc∗ bd∗

]

.

Notice the complex conjugation in the process of taking the dual.

After the above review, we are ready to outline the quantum computer. Fig. 6 is the

generalization of Fig. 1 to the quantum case. The function f is replaced by a unitary

operator U and classical bits are replaced by quantum bits, where each one has a state

|ψi〉. In Fig. 6, we are taking a non-entangled input, what is quite reasonable. In fact,

|ψi〉 is either |0〉 or |1〉 generally. |ψ〉 on the right hand side of Fig. 6 is the result of

the application of U on the input. The last step is the measurement of the states of

each qubit, which returns zeroes and ones that form the final result of the quantum

calculation. Note that there is, in principle, an infinite number of possible operators U ,

which are unitary 2n · 2n matrix, with continuous entries. In particular, one must take

errors into account, which reduces the number of implementable circuits. But even in

this case, the number of degrees of freedom is greater than in the classical case.

}
|ψ1〉
|ψ2〉

|ψn〉

|ψ〉U

Figure 6: The sketch of the quantum computer. We consider the input non-

entangled, which is reasonable in general. On the other hand, the output is

entangled in general. The measurement of the state |ψ〉, not shown here, returns

zeroes and ones.

10

Similarly to the classical case, the operator U is in general written in terms of gates

forming a quantum circuit, which is the topic of the next section.

4 Quantum Circuits

Let us start with one-qubit gates. In the classical case there is only one possibility, which

is the NOT gate, like the ones used in Fig. 2. The straightforward generalization to the

quantum case is given in Fig. 7, where X is the unitary operator

X =

[

0 1

1 0

]

.

So, if |ψ〉 is |0〉, the output is |1〉 and vice-versa. But now we have a situation with no

classical counterpart. The state |ψ〉 can be a superposition of states |0〉 and |1〉. The

general case is given in Eq. (1). The output in this case is α|1〉 + β|0〉.
The gate X is not the only one-qubit gate. There are infinitely many, since there are

an infinite number of 2 · 2 unitary matrices. In principle, any unitary operation can be

implemented in practice. The Hadamard gate is another important one-qubit gate, given

by

H =
1√
2

[

1 1

1 −1

]

.

It is easy to see that

H|0〉 =
|0〉 + |1〉√

2
,

H|1〉 =
|0〉 − |1〉√

2
.

If the input is |0〉, the Hadamard gate creates a superposition of states with equal weights.

This is a general feature, valid for two or more qubits. Let us analyze the 2-qubit case.

The first example of a 2-qubit gate is H ⊗H:

H⊗2|0〉|0〉 = (H ⊗H)(|0〉 ⊗ |0〉) = H|0〉 ⊗H|0〉

=

(|0〉 + |1〉√
2

)

⊗
(|0〉 + |1〉√

2

)

=
1

2
(|0〉|0〉 + |0〉|1〉 + |1〉|0〉 + |1〉|1〉)

=
1

2
(|0〉 + |1〉 + |2〉 + |3〉).

X|ψ〉 X |ψ〉

Figure 7: Quantum NOT gate.

11

The result is a superposition of all basis states with equal weights. More generally, the

Hadamard operator applied to the n-qubit state |0〉 is

H⊗n|0〉 =
1√
2n

2n−1
∑

i=0

|i〉.

Thus, the tensor product of n Hadamard operators produces an equally weighted super-

position of all computational basis states, when the input is the state |0〉.
Another important 2-qubit quantum gate is the CNOT gate, which is the quantum

generalization of the classical gate described earlier (Fig. 3). It has two input qubits, the

control and the target qubit, respectively. The target qubit is flipped only if the control

qubit is set to 1, that is,

|00〉 ջ |00〉,
|01〉 ջ |01〉, (7)

|10〉 ջ |11〉,
|11〉 ջ |10〉.

The action of the CNOT gate can also be represented by

|a, b〉 ջ |a, a⊕ b〉,

where ⊕ is addition modulo 2. Now, let us obtain its matrix representation. We know

that

|00〉 = |0〉 ⊗ |0〉 =

[

1

0

]

⊗
[

1

0

]

=

⌈







⌊

1

0

0

0

⌉







⌋

,

|01〉 = |0〉 ⊗ |1〉 =

[

1

0

]

⊗
[

0

1

]

=

⌈







⌊

0

1

0

0

⌉







⌋

, (8)

|10〉 = |1〉 ⊗ |0〉 =

[

0

1

]

⊗
[

1

0

]

=

⌈







⌊

0

0

1

0

⌉







⌋

,

|11〉 = |1〉 ⊗ |1〉 =

[

0

1

]

⊗
[

0

1

]

=

⌈







⌊

0

0

0

1

⌉







⌋

.

12

Thus, from (7) and (8), the matrix representation UCNOT of the CNOT gate is

UCNOT =

⌈







⌊

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⌉







⌋

.

Fig. 8 describes the CNOT gate, where |i〉 is either |0〉 or |1〉. The figure could

lead one to think that the output is always non-entangled, but that is not true, since if

the first qubit is in a more general state given by a |0〉 + b |1〉, then the output will be

a |0〉 |σ〉 + b |1〉X |σ〉, which is entangled in general.

CNOT and one-qubit gates form a universal set of gates. This means that any other

gate, operating on 2 or more qubits can be written as compositions and direct products

of CNOT and one-qubit gates [16].

We have seen two examples of 2-qubit gates. The general case is a 4 · 4 unitary

matrix. Gates that are the direct product of other gates, such as H ⊗H, do not produce

entanglement. If the input is non-entangled, the output is not too. On the other hand,

the output of the CNOT gate can be entangled while the input is non-entangled.

The next gate we consider is the 3-qubit quantum Toffoli gate. Its action on the

computational basis is given by

|a, b, c〉 ջ |a, b, c ⊕ ab〉.

The action on a generic state

|ψ〉 =

1
∑

a,b,c=0

αa,b,c|a, b, c〉 =

⌈













⌊

α000
...

α101

α110

α111

⌉













⌋

is obtained by linearity as

|ψ′〉 =

1
∑

a,b,c=0

αa,b,c|a, b, c ⊕ ab〉 =

⌈













⌊

α000
...

α101

α111

α110

⌉













⌋

.

|i〉 |i〉

|σ〉 Xi |σ〉

Figure 8: CNOT gate.

13

So, the matrix representation for the Toffoli gate becomes

UToffoli =

⌈

























⌊

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⌉

























⌋

.

Further details about quantum circuits can be found in [16, 9].

5 Grover’s Algorithm

Suppose we have an unstructured database with N elements. Without loss of generality,

suppose that the elements are numbers from 0 to N − 1. The elements are not ordered.

Classically, we would test each element at a time, until we hit the one searched for. This

takes an average of N/2 attempts and N in the worst case, therefore the complexity is

O(N). As we will see, using Quantum Mechanics only O(
√
N) trials are needed. For

simplicity, assume that N = 2n, for some integer n.

Grover’s algorithm has two registers: n qubits in the first and one qubit in the

second. The first step is to create a superposition of all 2n computational basis states

{|0〉 , ..., |2n − 1〉} of the first register. This is achieved in the following way. Initialize the

first register in the state |0, ..., 0〉 and apply the operator H⊗n

|ψ〉 = H⊗n |0, ..., 0〉
= (H |0〉)⊗n

=

(|0〉 + |1〉√
2

)⊗n

=
1√
N

N−1
∑

i=0

|i〉 . (9)

|ψ〉 is a superposition of all basis states with equal amplitudes given by 1/
√
N . The

second register can begin with |1〉 and, after a Hadamard gate is applied, it will be in

state |−〉 = (|0〉 − |1〉)/
√

2.

Now define f : {0, ..., N − 1} ջ {0, 1} as a function which recognizes the solution:

f(i) =

{

1 if i is the searched element (i0)

0 otherwise.
(10)

This function is used in the classical algorithm. In the quantum algorithm, let us assume

that it is possible to build a linear unitary operator also dependent on f , Uf , such that

Uf (|i〉 |j〉) = |i〉 |j ⊕ f(i)〉 . (11)

14

Uf is called oracle. In the above equation, |i〉 stands for a state of the first register, so i

is in {0, ..., 2n − 1}, |j〉 is a state of the second register, so j is in {0, 1}, and the sum is

modulo 2. It is easy to check that

Uf (|i〉 |−〉) =
Uf (|i〉 |0〉) − Uf (|i〉 |1〉)√

2

=
|i〉 |f(i)〉 − |i〉 |1 ⊕ f(i)〉√

2

= (−1)f(i) |i〉 |−〉 . (12)

In the last equality, we have used the fact that

1 ⊕ f(i) =

{

0 for i = i0
1 for i 6= i0.

(13)

Now look at what happens when we apply Uf to the superposition state coming from

the first step, |ψ〉 |−〉. The state of the second register does not change. Let us call |ψ1〉
the resulting state of the first register:

|ψ1〉 |−〉 = Uf (|ψ〉 |−〉)

=
1√
N

N−1
∑

i=0

Uf (|i〉 |−〉)

=
1√
N

N−1
∑

i=0

(−1)f(i) |i〉 |−〉 . (14)

|ψ1〉 is a superposition of all basis elements, but the amplitude of the searched element

is negative while all others are positive. The searched element has been marked with a

minus sign. This result is obtained using a feature called quantum parallelism. At the

quantum level, it is possible “to see” all database elements simultaneously. The position

of the searched element is known: it is the value of i of the term with negative amplitude

in (14). This quantum information is not fully available at the classical level. A classical

information of a quantum state is obtained by practical measurements, and, at this point,

it does not help if we measure the state of the first register, because it is much more likely

that we obtain a non-desired element, instead of the searched one. Before we can perform

a measure, the next step should be to increase the amplitude of the searched element

while decreasing the amplitude of the others. This is quite general: quantum algorithms

work by increasing the amplitude of the states which carry the desired result. After that,

a measurement will hit the solution with high probability.

Now we shall work out the details by introducing the circuit for Grover’s algorithm

(Fig. 9) and analyzing it step by step. The unitary operator G is applied O(
√
N) times.

The exact number will be obtained later on. The circuit for one Grover iteration G is

given in Fig. 10. The states |ψ〉 and |ψ1〉 are given by Eqs. (9) and (14), respectively.

The operator 2 |ψ〉 〈ψ|−I is called inversion about the mean for reasons that will be clear

15

first
register

(qubits)n

second
register

(1 qubit)

|0〉

|0〉

|1〉 |1〉
|ψin〉 |ψ〉 |ψG〉 |ψG2 〉

Figure 9: Outline of Grover’s algorithm.

Uf

|−〉 |−〉

|0〉+|1〉√
2

|0〉+|1〉√
2

2 |ψ〉 〈ψ| − I

|ψ1〉|ψ〉 |ψG〉

Oracle

Figure 10: One Grover iteration (G). The states of the first register correspond

to the first iteration.

in the next section. We will also show how each Grover operator application raises the

amplitude of the searched element. |ψ1〉 can be rewritten as

|ψ1〉 = |ψ〉 − 2√
2n

|i0〉 , (15)

where |i0〉 is the searched element. |i0〉 is a state of the computational basis. Note that

〈ψ|i0〉 =
1√
2n
. (16)

Let us calculate |ψG〉 of Fig. 9. Using Eqs. (15) and (16), we obtain

|ψG〉 = (2 |ψ〉 〈ψ| − I) |ψ1〉

=
2n−2 − 1

2n−2
|ψ〉 +

2√
2n

|i0〉 . (17)

This is the state of the first register after one application of G. The second register is in

the state |−〉.

6 Geometric Representation

All the operators and amplitudes in Grover’s algorithm are real. This means that all

states of the quantum computer live in a real vector subspace of the Hilbert space.

16

This allows a nice geometrical representation taking |i0〉 and |ψ〉 as base vectors (non-

orthogonal basis).

In Fig. 11 we can see the vectors |i0〉 and |ψ〉. They form an angle smaller than 90o

as can be seen from Eq. (16), since 0 < 〈ψ|i0〉 < 1. If n is large, then the angle is nearly

90o. We can think that |ψ〉 is the initial state of the first register, and the steps of the

computation are the applications of the unitary operators Uf and 2 |ψ〉 〈ψ|− I. Then |ψ〉
will rotate in the real plane spanned by |ψ〉 and |i0〉, keeping the unit norm. This means

that the tip of |ψ〉’s vector lies in the unit circle.

¿From Eqs. (15) and (16) we see that |ψ〉 rotates θ degrees clockwise, where (see |ψ1〉
in Fig. 11)

cos θ = 1 − 1

2n−1
. (18)

¿From Eq. (17) we see that the angle between |ψG〉 and |ψ〉 is

cos θ′ = 〈ψ|ψG〉 = 1 − 1

2n−1
. (19)

So, θ′ = θ and |ψ1〉 rotates 2θ degrees counterclockwise (in the direction of |i0〉). This

explains the placement of |ψG〉 in Fig. 11. This is a remarkable result, since the resulting

action of G = (2 |ψ〉 〈ψ| − I)Uf rotates |ψ〉 towards |i0〉 by θ degrees. This means that

the amplitude of |i0〉 in |ψG〉 increased and the amplitudes of |i〉, i 6= i0, decreased with

respect to their original values in |ψ〉. A measurement, at this point, will return |i0〉 more

likely than before. But that is not enough in general, since θ is a small angle if n ≫ 1

(see Eq. (18)). That is why we need to apply G repeatedly, ending up θ degrees closer to

|i0〉 each time, until the state of the first register be very close to |i0〉, so we can measure.

Now we show that further applications of G also rotate the state of the first register

by θ degrees towards |i0〉. The proof is quite general: suppose that |σ〉 is a unit vector

|i0〉

|ψ〉

|ψ1〉 = Uf |ψ〉

|ψG〉 = G |ψ〉

θ

θ

Figure 11: The state of the first register lives in the real vector space spanned

by |i0〉 and |ψ〉. We take these states as a basis to describe what happens in

Grover’s algorithm.

17

|i0〉

|ψ〉

|ψ1〉

|σ〉

|σ1〉

G |σ〉

θ
α1

α2

Figure 12: A generic vector |σ〉 is reflected around the horizontal axis by the

application of Uf , yielding |σ1〉. Then, the reflection of |σ1〉 about the mean |ψ〉
gives G |σ〉, which is θ degrees closer to |i0〉 (vertical axis).

making an angle α1 with |ψ〉, as in Fig. 12. Let |σ1〉 be the state of the first register

after the application of Uf on |σ〉 |−〉. Uf changes the sign of the component of |σ〉 in

the direction of |i0〉. So |σ1〉 is the reflection of |σ〉 around the horizontal axis. Let α2 be

the angle between |ψ〉 and |σ1〉. Let us show that G |σ〉 lies in the subspace spanned by

|i0〉 and |ψ〉:

G |σ〉 = (2 |ψ〉 〈ψ| − I)Uf |σ〉
= 2 〈ψ|Uf |σ〉 |ψ〉 − |σ1〉
= 2cosα2 |ψ〉 − |σ1〉 . (20)

We have omitted the state |−〉 of the second register in the above calculation for simplicity.

|σ1〉 lies in the subspace spanned by |i0〉 and |ψ〉, then G |ψ〉 also does.

Now we prove that the angle between |σ〉 and G |σ〉 is θ, which is the angle between

|ψ〉 and |ψ1〉 (see Fig. 12):

〈σ|G|σ〉 = 2 〈σ|ψ〉 cosα2 − 〈σ|σ1〉
= cosα1 cosα2 − cos(α1 + α2)

= cos(α2 − α1). (21)

¿From Fig. 12 we see that α2 − α1 is θ. From Eq. (20) we see that G |σ〉 is a rotation of

|σ〉 towards |i0〉 by θ degrees.

The geometrical interpretation of the operator 2 |ψ〉 〈ψ| − I is that it reflects any real

vector around the axis defined by the vector |ψ〉. For example, in Fig. 12 we see that

G |σ〉 = (2 |ψ〉 〈ψ| − I) |σ1〉 is the reflection of |σ1〉 around |ψ〉. 2 |ψ〉 〈ψ| − I is called

inversion about the mean for the following reason. Let |σ〉 =
∑2n−1

i=0 σi |i〉 be a generic

18

vector and define 〈σ〉 =
∑2n−1

i=0 σi (mean of the amplitudes of |σ〉). Defining

∣

∣σ′
〉

=
2n−1
∑

i=0

(σi − 〈σ〉) |i〉 , (22)

results

(2 |ψ〉 〈ψ| − I)
∣

∣σ′
〉

= −
∣

∣σ′
〉

. (23)

The above equation shows that a vector with amplitudes σi − 〈σ〉 is transformed to a

vector with amplitudes −(σi−〈σ〉). Note that |σ′〉 is not normalized, but this is irrelevant

in the above argument because the amplitudes of |σ〉 and |σ′〉 only differ by a minus sign.

Uf also has a geometrical interpretation, which can be seen from the expression

Uf = I − 2 |i0〉 〈i0| , (24)

which yields

Uf |i〉 =

{

|i〉 , if i 6= i0
− |i0〉 , if i = i0.

(25)

Therefore, the above representation for Uf is equivalent to Eq. (12) if we do not consider

the state of the second register. The geometrical interpretation is: Uf reflects a generic

vector about the plane orthogonal to |i0〉. This is what Eq. (25) shows for vectors of

the computational basis. The interpretation is valid for a generic vector because Uf is

linear. We have not used Eq. (24) to define Uf before, because we do not know i0 before

running the algorithm. On the other hand, we assumed that it is possible somehow to

use function f given by Eq. (10), and to build Uf as given by Eq. (11).

7 An Example: Grover for N = 8

We describe Grover’s Algorithm for a search space of 8 elements. If N = 8 then n = 3.

There are 3 qubits in the first register and 1 qubit in the second register. For N = 8, the

operator G will be applied 2 times as we will see in Eq. (50). The circuit in this case is

given in Fig. 13. The oracle is queried 2 times. Classically, an average of more than 4

queries are needed in order to have a probability of success of more than 1/2.

Let us describe the quantum computer state at each step shown in the circuit (|ψ0〉 , |ψ〉 ,
|ψ1〉 , |ψ2〉 , |ψ3〉 , and |ψf 〉). The initial state is

|ψ0〉 = |000〉 . (26)

After applying Hadamard gates,

|ψ〉 = H⊗3 |000〉 = (H |0〉)⊗3 =
1

2
√

2

7
∑

i=0

|i〉 . (27)

19

Uf Uf

G G

OracleOracle

|−〉|−〉|−〉
|1〉|1〉

|0〉

|0〉
|0〉

2 |ψ〉 〈ψ| − I 2 |ψ〉 〈ψ| − I

|ψ1〉 |ψ2〉 |ψ3〉|ψ0〉 |ψ〉 |ψf 〉

Figure 13: Grover’s algorithm for N = 8.

Suppose that we are searching for the element with index 5. Since |5〉 = |101〉,

Uf (|101〉 |−〉) = − |101〉 |−〉
Uf (|i〉 |−〉) = |i〉 |−〉 , if i 6= 5. (28)

Define |u〉 as

|u〉 =
1√
7

7
∑

i = 0
i 6= 5

|i〉

=
|000〉 + |001〉 + |010〉 + |011〉 + |100〉 + |110〉 + |111〉√

7
. (29)

Then

|ψ〉 =

√
7

2
√

2
|u〉 +

1

2
√

2
|101〉 . (30)

With this result we can see the direction of |ψ〉 in Fig. 14. The value of θ is

θ = 2arccos

(√
7

2
√

2

)

= arccos

(

3

4

)

≈ 41.4o. (31)

The next step is

|ψ1〉 |−〉 = Uf (|ψ〉 |−〉)

=

(|000〉 + |001〉 + |010〉 + |011〉 + |100〉 − |101〉 + |110〉 + |111〉
2
√

2

)

|−〉 .(32)

Note that |101〉 is the only state with a minus sign. We can write |ψ1〉 as

|ψ1〉 = |ψ〉 − 1√
2
|101〉 (33)

20

|u〉

|101〉

|ψ1〉

|ψ2〉

|ψ3〉

|ψ〉

|ψf 〉

θ
θ

θ/2

Figure 14: Intermediate states in Grover’s algorithm for N = 8. Notice how

close is |ψf 〉 to |101〉, indicating a high probability that a measurement will give

the searched element. The value of θ is around 41.4o.

or

|ψ1〉 =

√
7

2
√

2
|u〉 − 1

2
√

2
|101〉 . (34)

The form of Eq. (33) is useful in the next step of calculation, since we have to apply

2 |ψ〉 〈ψ| − I. The form of Eq. (34) is useful to draw |ψ1〉 in Fig. 14. |ψ1〉 is the reflection

of |ψ〉 with respect to |u〉.
Next we calculate

|ψ2〉 = (2 |ψ〉 〈ψ| − I) |ψ1〉 . (35)

Using Eq. (33), we get

|ψ2〉 =
1

2
|ψ〉 +

1√
2
|101〉 (36)

and, using Eq. (30),

|ψ2〉 =

√
7

4
√

2
|u〉 +

5

4
√

2
|101〉 . (37)

Let us confirm that the angle between |ψ〉 and |ψ2〉 is θ:

cos θ = 〈ψ|ψ2〉 =
1

2
〈ψ|ψ〉 +

1√
2
〈ψ|101〉 =

3

4
, (38)

which agrees with Eq. (31). This completes one application of G.

The second and last application of G is similar. |ψ3〉 is given by

|ψ3〉 =

√
7

2
√

2
|u〉 − 5

4
√

2
|101〉 . (39)

Using Eq. (30), we have

|ψ3〉 =
1

2
|ψ〉 − 3

2
√

2
|101〉 . (40)

21

|ψ3〉 is the reflection of |ψ2〉 with respect to |u〉.
The last step is

|ψf 〉 = (2 |ψ〉 〈ψ| − I) |ψ3〉 . (41)

Using Eqs. (30) and (40), we have

|ψf 〉 = −
√

7

8
√

2
|u〉 +

11

8
√

2
|101〉 . (42)

It is easy to confirm that |ψf 〉 and |ψ2〉 form an angle θ. Note that the amplitude of

the state |101〉 is much bigger than the amplitude of any other state |i〉 (i 6= 5) in Eq.

(42). This is the way most quantum algorithms work. They increase the amplitude of

the states that carry the desired information. A measurement of the state |ψf 〉 in the

computational basis will project it into the state |101〉 with probability

p =

∣

∣

∣

∣

11

8
√

2

∣

∣

∣

∣

2

≈ 0.945. (43)

The chance of getting the result |101〉, which reads as number 5, is around 94, 5%.

8 Generalization

The easiest way to calculate the output of Grover’s Algorithm is to consider only the

action of G instead of breaking the calculation into the action of the oracle (Uf) and

the inversion about the mean. To this end, we choose |i0〉 and |u〉 as the basis for the

subspace where |ψ〉 rotates after successive applications of G. |i0〉 is the searched state

and |u〉 is defined as in Eq. (29),

|u〉 =
1√
N − 1

N−1
∑

i = 0
i 6= i0

|i〉

=

√

N

N − 1
|ψ〉 − 1√

N − 1
|i0〉 . (44)

¿From the first equation above we easily see that 〈i0|u〉 = 0, i.e., |i0〉 and |u〉 are orthog-

onal. From the second equation we have

|ψ〉 =

√

1 − 1

N
|u〉 +

1√
N

|i0〉 . (45)

The state of the quantum computer at each step is

Gk |ψ〉 = cos

(

2k + 1

2
θ

)

|u〉 + sin

(

2k + 1

2
θ

)

|i0〉 , (46)

22

where we have dropped the state of the second register since it is |−〉 all the time. Eq.(46)

is obtained from Fig. 15 after analyzing the components of Gk |ψ〉. The value of θ is

obtained substituting k for 0 in Eq. (46) and comparing it with Eq. (45),

θ = 2arccos

√

1 − 1

N
. (47)

Eq.(46) expresses the fact we proved in section 6, that each application of G rotates the

state of the first register by θ degrees towards |i0〉. Fig. 15 shows successive applications

of G.

The number of times k0 that G must be applied obeys the equation

k0θ +
θ

2
=
π

2
. (48)

Since k0 must be integer, we write

k0 = round

(

π − θ

2θ

)

, (49)

where θ is given by Eq. (47). If N ≫ 1, by Taylor expanding Eq. (47), we get θ ≈ 2/
√
N

and from Eq. (49),

k0 = round
(π

4

√
N
)

. (50)

After applying G k0 times, the probability p of finding the desired element after a mea-

surement is

p = sin2

(

2k0 + 1

2
θ

)

. (51)

Fig. 16 shows p for n from 2 to 30. Recall that N = 2n, so for n = 30 the search

space has around 1 billion elements. For n = 2 the probability of getting the result is

exactly 1. The reason for this is that Eq. (47) yields θ = π/3 and |ψ〉 makes an angle

π/6 with |u〉. Applying G one time rotates |ψ〉 to |i0〉 exactly. For n = 2, Eq. (51) yields

p ≈ 0.945 which is the result (43) of the previous section.

|u〉

|i0〉

G |ψ〉

G2 |ψ〉
G3 |ψ〉

|ψ〉

θ

θ

θ

θ/2

Figure 15: Effect of G on |ψ〉.

23

0.9

0.92

0.94

0.96

0.98

1

p(n)

0 5 10 15 20 25 30

n=log N

Figure 16: Probability of succeeding as a function of n.

9 Grover Operator in Terms of the Universal Gates

In this section we go in the opposite direction. We decompose G in terms of universal

gates, which are CNOT and one-qubit gates. This decomposition shows how to implement

G in practice. Let us begin by decomposing the inversion about the mean 2 |ψ〉 〈ψ| − I.

Recall that

|ψ〉 = H⊗n |0〉 . (52)

Then

2 |ψ〉 〈ψ| − I = H⊗n(2 |0〉 〈0| − I)H⊗n. (53)

This equation shows that it is enough to consider the operator 2 |0〉 〈0|− I, which inverts

a generic vector about the vector |0〉. The circuit for it is given in Fig. 17. One can

convince oneself that the circuit gives the correct output by following what happens to

each state of the computational basis. The input |0〉 is the only one that does not change

n
qubits

X

H

X

X

X

X

X

X

X

H

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉

iIiI

Figure 17: Circuit for 2 |0〉 〈0| − I. Note the presence of the imaginary unit,

which does not affect the real character of the operator.

24

signal. The intermediate states as shown in Fig. 17 are

|ψ0〉 = |0〉 |0〉 ... |0〉 |0〉
|ψ1〉 = |1〉 |1〉 ... |1〉 |1〉
|ψ2〉 = i |1〉 |1〉 ... |1〉 |−〉
|ψ3〉 = i |1〉 |1〉 ... |1〉 (− |−〉)
|ψ4〉 = −i(i |1〉) |1〉 ... |1〉 |1〉
|ψ5〉 = |0〉 |0〉 ... |0〉 |0〉 .

(54)

The same calculations for the input |j〉, 0 < j < N , results in − |j〉 as output.

The only operator in Fig. 17 that does not act on single qubits is the generalized

Toffoli gate, which is shown alone in Fig. 18. The decomposition of the generalized

Toffoli gate in terms of Toffoli gates is given in Fig. 19. The n − 2 work qubits are

extra qubits whose input and output are known a priori. They are introduced in order

to simplify the decomposition. A careful analysis of Fig. 19 shows that the output is the

same of the generalized Toffoli gate with the extra work qubits.

The final step is the decomposition of the Toffoli gate, which is given in Fig. 20,

where S is the phase gate

S =

[

1 0

0 i

]

(55)

and T is the π/8 gate

T =

[

1 0

0 eiπ/4

]

. (56)

This decomposition can be verified either by an exhaustive calculation of tensor products

and operator compositions or by an exhaustive application of operators on basis elements.

By now one should be asking about the decomposition of Uf in terms of elementary

gates. Uf has a different nature from other operators in Grover’s algorithm, since its

implementation depends on how data is loaded from a quantum memory of a quantum

computer. On the other hand, we have pointed out that Uf can be represented by

I − 2 |i0〉 〈i0| (Eq. (24)), if one knows the answer i0 a priori. This representation is

useful for simulating Grover’s algorithm in a classical computer to test its efficiency. The

operator I − 2 |i0〉 〈i0| is decomposed as a generalized Toffoli gate with n control qubits,

n-1
control
qubits

target
qubit

|j1〉|j1〉
|j2〉|j2〉

|jn−1〉|jn−1〉
|jn〉 Xj1j2...jn−1 |jn〉

Figure 18: Generalized Toffoli gate.

25

n-1
control
qubits

n-2
work
qubits

target
qubit

|j1〉 |j1〉
|j2〉 |j2〉
|j3〉 |j3〉

|jn−1〉 |jn−1〉

|jn〉 Xj1j2...jn−1 |jn〉

|0〉 |0〉
|0〉 |0〉

|0〉 |0〉
|0〉 |0〉

Figure 19: Decomposition of the generalized Toffoli gate in terms of Toffoli gates.

S

H

T
+

T T
+

T

T
+

H

T
+

T

=

Figure 20: The Toffoli gate in terms of CNOT and one-qubit gates.

one target qubit in the state |−〉, and two symmetrical X gates in the ith qubit, if the

ith binary digit of i0 is 0. For example, the operator Uf used in section 7, for N = 8 (see

Eq. (28)) is given in Fig. 21.

In section 1, we have pointed out that the efficiency of an algorithm is measured by

how the number of elementary gates increases as a function of the number of qubits.

Counting the number of elementary gates (Figs. 9, 10, 17, 19, and 20), and using Eq.

(50), we get π(17n− 15)
√

2n + n+ 2, which yields complexity O(n
√

2n), or equivalently

Õ(
√

2n). The notation Õ(N) means O(poly(log(N))N).

XX

|−〉|−〉

Figure 21: Decomposition of I − 2 |101〉 〈101|, which simulates Uf that searches

number 5.

26

Acknowledgments

We thank the Group of Quantum Computation at LNCC, in particular, Drs. F. Haas

and G. Giraldi, and the students J.F. Abreu, D.C. Resende, and F. Marquezino. We

thank also Drs. L. Davidovich and N. Zaguri for stimulating discussions on the subject.

References

[1] P. Shor, Algorithms for Quantum Computation: Discrete Logarithm and Factor-

ing, Proc. 35th Annual Symposium on Foundations of Computer Science (1994)

124-134.

[2] L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, and

I.L. Chuang, Experimental realization of Shor’s quantum factoring algorithm

using nuclear magnetic resonance, Nature, 414 (2001) 883-887.

[3] L.K. Grover, A fast quantum mechanical algorithm for database search, Proc.

28th Annual ACM Symposium on the Theory of Computing (STOC), May (1996)

212-219.

[4] L.K. Grover, Quantum Mechanics helps in searching for a needle in a haystack,

Phys. Rev. Lett. 79 (1997) 325.

[5] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation,

Proc. R. Soc. London A439 (1992) 553-558.

[6] E. Bernstein and U.V. Vazirani, Quantum Complexity Theory, Proc. 25th ACM

Symp. on Theory of Computation, San Diego, CA, 1993, pp. 11-20 and SIAM

Journal on Computing 26 (1997) 1411-1473.

[7] D. Simon, On the power of quantum computation, Proc. 35th Annual Sympo-

sium on Foundations of Computer Science (1994) 116 and SIAM Journal on

Computing 26 (1997) 1474-1483.

[8] D. Aharonov, Quantum Computation, Annual Reviews of Computational

Physics, ed. Dietrich Stauffer, World Scientific, vol. VI (1998).

[9] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Informa-

tion, Cambridge University Press, Cambridge (2000).

[10] J. Preskill, Quantum Information and Computation, Lecture Notes, California

Institute of Technology (1998).

[11] C.H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and Weak-

nesses of Quantum Computing, SIAM Journal on Computing 26 (1997) 1510-

1523.

27

[12] M. Boyer, G. Brassard, P. Høyer and A. Tapp, Tight bounds on quantum search-

ing, Fortsch. Phys. 46 (1998) 493-506.

[13] G. Brassard, P. Høyer, and A. Tapp, Quantum Counting, quant-ph/9805082.

[14] C.H. Papadimitriou, Computational Complexity, Addison Wesley Pub. Co., Mas-

sachussetts (1994).

[15] D. Deutsch, Quantum theory, the Church-Turing principle and the universal

quantum computer, Proc. R. Soc. London A400 (1985) 97-117.

[16] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T.

Sleator, J. Smolin, and H. Weinfurter, Elementary gates for quantum computa-

tion, Phys. Rev. A52 (1995) 3457-3467.

28

http://es.arXiv.org/abs/quant-ph/9805082

	Introduction
	The Classical Computer
	The Quantum Computer
	Quantum Circuits
	Grover's Algorithm
	Geometric Representation
	An Example: Grover for N=8
	Generalization
	Grover Operator in Terms of the Universal Gates

